Rabu, 15 Mei 2013

Gelombang Elektromagnetik

1.Pengertian Gelombang Elektromagnetik
James Clerk Maxwell (1831-1879), adalah orang pertama yang menghitung besar laju rambatan gelombang elektro-magnet dalam ruang hampa. Cahaya termasuk gelombang elektro-magnetik. Cepat rambat gelombang elektromagnetik (c) tergantung dari permitivitas (ε ) dan permeabilitas ( µ) zat.
εr = permeabilitas relatif
εo = permeabilitas udara

Untuk medium hampa udara, Untuk medium hampa udara, εr dan µr masing-masing sama dengan 1. Cepat rambat gelombang elektromagnetik dengan εo= 8,85 x 10-12 dan µo = 4x 10-7 diperoleh sebesar c = 3 x 108 m/s. Dengan demikian dapat dihitung cepat rambat gelombang elektromagnetik pada suatu medium, jika diketahui permitifitas dan permeabilitas relatifnya.

Hubungan panjang gelombang () dan frekuensi gelombang (f) dinyatakan dengan rumus

C = cepat rambat gelombang

= panjang gelombang

 f = frekuensi

Hubungan antara medan listrik (E), medan magnet (B), dan arah rambatan (c) gelombang elektromagnetik dapat ditentukan dengan menggunakan aturan tangan kiri.
Elektromagnetik dari kata “Elektro” dan “Magnetik” yang berarti gelombang yang terdiri dari energy Listrik dan Magnet yang memancar dengan sumber Muatan yang bergerak bolak-balik. System kerja elektromagnetik merambat dengan system tangan kanan manusia yaitu arah jari keatas adalah Medan Listrik, arah telapak tangan adalah Medan Magnet, dan arah jempol adalah arah merambat vektor gelombang.
Gelombang Elektromagnetik adalah gelombang yang dapat merambat walau tidak ada medium. Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa diukur, yaitu: panjang gelombang/wavelength, frekuensi, amplitude/amplitude, kecepatan. Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik dalam satu satuan waktu. Frekuensi tergantung dari kecepatan merambatnya gelombang. Karena kecepatan energi elektromagnetik adalah konstan (kecepatan cahaya), panjang gelombang dan frekuensi berbanding terbalik. Semakin panjang suatu gelombang, semakin rendah frekuensinya, dan semakin pendek suatu gelombang semakin tinggi frekuensinya.
 Energi elektromagnetik dipancarkan, atau dilepaskan, oleh semua masa di alam semesta pada level yang berbeda-beda. Semakin tinggi level energi dalam suatu sumber energi, semakin rendah panjang gelombang dari energi yang dihasilkan, dan semakin tinggi frekuensinya. Perbedaan karakteristik energi gelombang digunakan untuk mengelompokkan energi elektromagnetik.
Konsep penginderaan jauh sering dihubungkan dengan berbagai teknik menggunakan gelombang elektromagnetik dalam perolehan informasi di permukaan bumi. Radiasi elektromagnetik membawa energi dalam perjalannya. Energi yang tertangkap oleh sensor dipengaruhi oleh bentuk fisik obyek dan kondisi atmosferik. Gelombang elektromagnetik memiliki dua komponen pokok, yaitu komponen elektrik dan komponen magnetik (Mather, 2004).
Terdapat beberapa istilah terkait dengan energi dan gelombang elektromagnetik. Energi yang berasosiasi dengan gelombang elektromagnetik tersebut dikenal dengan istilah Radiant Energy. Rata-rata energi yang dipindahkan dari satu tempat ke tempat lain disebut dengan flux energy. Flux energy diukur dengan menggunakan satuan Watts (W). Rata-rata energi yang dipindahkan oleh gelombang elektromagnetik disebut dengan Radiant Flux. Magnitude dari radiant flux pada suatu satuan permukaan disebut dengan Radiant Flux Density. Radian flux density ini diukur dengan satuan Watts per meter persegi (Wm-2).
Informasi yang diperoleh melalui gelombang elektromagnetik dapat terkodifikasi dalam frekuensi, intensitas atau polarisasi gelombang elektromagnetik tersebut. Informasi diperoleh dari radiasi secara langsung gelombang elektromagnetik dari sumber benda ke sensor melalui bidang bebas, atau radiasi tidak langsung melalui pantulan, penghamburan, atau radiasi ulang menuju sensor (Elachi & Zyl, 2006).
Panjang gelombang dan frekuensi dapat memberikan informasi yang sama, oleh karena itu kedua terminologi tersebut sering digunakan secara bersamaan ataupun saling menggantikan satu sama lain (Schowengerdt; 2006). Keterkaitan panjang gelombang dengan frekuensi dapat di formulasikan sebagai berikut.
f=c/λ 
λ=c/f 
T=1/f=λ/c 
Keterangan :
f            : frekuensi (Hz)
λ           : Panjang gelombang
c           : Kecepatan cahaya (299.792.458 m/detik)
T           : waktu yang digunakan gelombang mencapai satu periode
Panjang gelombang disimbolkan dengan lambda (λ). Panjang gelombang diukur dalam satuan meter (m) ataupun faktor turunannya seperti centimeter (cm), nanometer (nm), mikrometer (µm).
Tabel. Satuan ukuran panjang gelombang
Faktor
Awalan
Simbol
10-18
Atto
a
10-15
Femto
f
10-12
Pico
P
10-9
Nano
N
10-6
Micro
µ
10-3
Mili
m
103
Kilo
K
106
Mega
M
109
Giga
G
1012
Tera
T
Frekuensi diukur dalam satuan Hertz yang disingkat Hz. Frekuensi memiliki hubungan yang terbalik dengan panjang gelombang elektromagnetik. Semakin pendek panjang gelombang elektromagnetik, akan semakin tinggi frekuensi gelombang tersebut. Sebaliknya dengan semakin panjangnya suatu gelombang elektromagnetik, frekuensinya akan semakin rendah. Tabel berikut memberikan gambaran keterkaitan antara panjang gelombang dengan frekuensinya.
 Tabel. Panjang gelombang dan frekuensi
λ
F
0.03Å
1019Hz
0.3 Å
1018Hz
3 Å
1017Hz
30 Å
1016Hz
0.3µ
1015Hz
3 µ
100THz
30 µ
10THz
0.3mm
1THz
3mm
100GHz
30mm
10GHz
0.3m
1GHz
3m
100MHz
30m
10MHz
0.3km
1MHz
3km
100kHz
30km
10kHz
300km
1kHz
3000km
100Hz
30000km
10Hz
Total energi yang dibawa oleh suatu gelombang dapat dihitung dengan persamaan sebagai berikut.
E=h.f 

Keterangan :
E           : Total energi pada suatu panjang gelombang
h           : Konstanta Plank ( 6.625 x 10-34 J s)
f            : frekuensi (Hz)
Energi suatu gelombang akan meningkat sejalan dengan frekuensi. Oleh karena itu energi yang dibawa oleh sinar X jauh lebih besar dibandingkan dengan energi pada sinar tampak atau gelombang radio.

SUMBER GELOMBANG ELEKTROMAGNETIK
  1. Osilasi listrik.
  2. Sinar matahari ® menghasilkan sinar infra merah.
  3. Lampu merkuri ® menghasilkan ultra violet.
  4. Penembakan elektron dalam tabung hampa pada keping logam ® menghasilkan sinar X (digunakan untuk rontgen).
  5. Inti atom yang tidak stabil  menghasilkan sinar gamma.
2.Jenis dan Kegunaan Gelombang Elektromagnetik

Pemanfaatan Spektrum Gelombang Elektromagnetik dalam Kehidupan- Jauh sebelum Maxwell meramalkan gelombang elektromagnetik, cahaya telah dipandang sebagai gelombang. Akan tetapi, tidak seorang pun tahu jenis gelombang apakah cahaya itu. Baru setelah adanya hasil perhitungan Maxwell tentang kecepatan gelombang elektromagnetik dan bukti eksperimen oleh Hertz, cahaya dikategorikan sebagai gelombang elektromagnetik. Tidak hanya cahaya yang termasuk gelombang elektromagnetik melainkan masih banyak lagi jenis-jenis yang termasuk gelombang elektromagnetik. Gelombang elektromagnetik telah dibangkitkan atau dideteksi pada jangkauan frekuensi yang lebar. Jika diurut dari frekuensi terbesar hingga frekuensi terkecil, yaitu sinar gamma, sinar-X, sinar ultraviolet, sinar tampak (cahaya), sinar inframerah, gelombang mikro (radar), gelombang televisi, dan gelombang radio. Gelombang-gelombang ini disebut spektrum gelombang elektromagnetik. Berikut adalah pemanfaatan gelombang elektromagnetik pada spektrum tersebut:

Ø  Sinar Gamma
Sinar gamma merupakan salah satu spektrum gelombang elektromagnetik yang memiliki frekuensi paling besar atau panjang gelombang terkecil. Frekuensi yang dimiliki sinar gamma berada dalam rentang 1020 Hz sampai 1025 Hz. Sinar gamma dihasilkan dari peristiwa peluruhan inti radioaktif. Inti atom unsur yang tidak stabil meluruh menjadi inti atom unsur lain yang stabil dengan memancarkan sinar radioaktif, di antaranya sinar alfa, sinar beta, dan sinar gamma. Di antara ketiga sinar radioaktif ini, yang termasuk gelombang elektromagnetik adalah sinar gamma. Sementara dua lainnya merupakan berkas partikel bermuatan listrik. Jika dibandingkan dengan sinar alfa dan sinar beta, sinar gamma memiliki daya tembus yang paling tinggi sehingga dapat menembus pelat logam hingga beberapa sentimeter. Sekarang, sinar gamma banyak dimanfaatkan dalam bidang kedokteran, diantaranya untuk mengobati penyakit kanker dan mensterilkan peralatan rumah sakit. Selain itu, sinar gamma dapat digunakan untuk melihat kerusakan pada logam.

Ø  Sinar-X
Sinar-X, dikenal juga sebagai sinar Röntgen. Nama ini diambil dari penemunya, yaitu Wilhelm C. Röntgen (1845 – 1923). Sinar-X dihasilkan dari peristiwa tumbukan antara elektron yang dipercepat pada beda potensial tertentu. Sinar-X digunakan dalam bidang kedokteran, seperti untuk melihat struktur tulang yang terdapat dalam tubuh manusia. Jika Anda pernah mengalami patah tulang, sinar ini dapat membantu dalam mencari bagian tulang yang patah tersebut. Hasil dari sinar ini berupa sebuah film foto yang dapat menembus hingga pada bagian tubuh yang paling dalam. Orang yang sering merokok dengan yang tidak merokok akan terlihat bedanya dengan cara menyinari bagian tubuh, yaitu paru-paru. Paru-paru orang yang merokok terlihat bercak-bercak berwarna hitam, sedangkan pada normalnya paru-paru manusia cenderung utuh tanpa bercak.

Ø  Sinar Ultraviolet
Sinar ultraviolet dihasilkan dari radiasi sinar Matahari. Selain itu, dapat juga dihasilkan dari transisi elektron dalam orbit atom. Jangkauan frekuensi sinar ultraviolet, yaitu berkisar diantara 105 hertz sampai dengan 1016 hertz. Sinar ultraviolet dapat berguna dan dapat juga berbahaya bagi kehidupan manusia. Sinar ultraviolet dapat dimanfaatkan untuk mencegah agar bayi yang baru lahir tidak kuning warna kulitnya. Selain itu, sinar ultraviolet yang berasal dari Matahari dapat merangsang tubuh manusia untuk memproduksi vitamin D yang diperlukan untuk kesehatan tulang. Sinar ultraviolet tidak selamanya bermanfaat. Lapisan ozon di atmosfer Bumi (pada lapisan atmosfer) berfungsi untuk mencegah supaya sinar ultraviolet tidak terlalu banyak sampai ke permukaan Bumi. Jika hal tersebut terjadi, akan menimbulkan berbagai penyakit pada manusia, terutama pada kulit.

Ø  Sinar Tampak
Sinar tampak atau cahaya merupakan gelombang elektromagnetik yang dapat dilihat dan sangat membantu dalam penglihatan. Anda tidak akan dapat melihat apapun tanpa bantuan cahaya. Sinar tampak memiliki jangkauan panjang gelombang yang sempit, mulai dari 400 nm sampai dengan 700 nm. Sinar tampak terdiri atas tujuh spektrum warna, jika diurutkan dari frekuensi terkecil ke frekuensi terbesar, yaitu merah, jingga, kuning, hijau, biru, nila, dan ungu (disingkat mejikuhibiniu). Sinar tampak atau cahaya digunakan sebagai penerangan ketika di malam hari atau ditempat yang gelap. Selain sebagai penerangan, sinar tampak digunakan juga pada tempat-tempat hiburan, rumah sakit, industri, dan telekomunikasi.


Ø  Sinar Inframerah
Sinar inframerah memiliki jangkauan frekuensi antara 1011 hertz sampai 1014 hertz. Sinar inframerah dihasilkan dari transisi elektron dalam orbit atom. Benda yang memiliki temperatur yang lebih relatif terhadap lingkungannya akan meradiasikan sinar inframerah, termasuk dari dalam tubuh manusia. Sinar ini dimanfaatkan, di antaranya untuk pengindraan jarak jauh, transfer data ke komputer, dan pengendali jarak jauh (remote control). Seorang tentara yang sedang berperang dapat melihat musuhnya dalam kegelapan dengan bantuan kacamata inframerah yang dapat melihat hawa panas dari seseorang. Dengan menggunakan kacamata ini dengan sangat mudah seseorang dapat ditemukan dalam ruangan gelap. Sinar inframerah dapat digunakan juga dalam bidang kedokteran, seperti diagnosa kesehatan. Sirkulasi darah dalam tubuh Anda dapat terlihat dengan menggunakan bantuan sinar inframerah. Selain itu, penyakit seperti kanker dapat dideteksi dengan menyelidiki pancaran sinar inframerah dalam tubuh Anda.
 

Ø  Gelombang Mikro
Gelombang mikro dihasilkan oleh rangkaian elektronik yang disebut osilator. Frekuensi gelombang mikro sekitar 1010 Hz. Gelombang mikro disebut juga sebagai gelombang radio super high frequency. Gelombang mikro digunakan, di antaranya untuk komunikasi jarak jauh, radar (radio detection and ranging), dan memasak (oven). Di pangkalan udara, radar digunakan untuk mendeteksi dan memandu pesawat terbang untuk mendarat dalam keadaan cuaca buruk. Antena radar memiliki dua fungsi, yaitu sebagai pemancar gelombang dan penerima gelombang. Gelombang mikro yang dipancarkan dilakukan secara terarah dalam bentuk pulsa. Ketika pulsa dipancarkan dan mengenai suatu benda, seperti pesawat atau roket pulsa akan dipantulkan dan diterima oleh antena penerima, biasanya ditampilkan dalam osiloskop. Jika diketahui selang waktu antara pulsa yang dipancarkan dengan pulsa yang diterima Δt dan kecepatan gelombang elektromagnetik c = 3 × 108 m/s, jarak antara radar dan benda yang dituju (pesawat atau roket), dapat dituliskan dalam persamaan berikut
s = ½ c.Δt
dengan: s = jarak antara radar dan benda yang dituju (m),
c = kecepatan gelombang elektromagnetik (3 × 108 m/s), dan
Δt = selang waktu (s).
Angka 2 yang terdapat pada Persamaan muncul karena pulsa melakukan dua kali perjalanan, yaitu saat dipancarkan dan saat diterima. Saat ini radar sangat membantu dalam pendaratan pesawat terbang ketika terjadi cuaca buruk atau terjadi badai. Radar dapat berguna juga dalam mendeteksi adanya pesawat terbang atau benda asing yang terbang memasuki suatu wilayah tertentu.

Ø  Gelombang Radio
Mungkin Anda sudah tahu atau pernah mendengar gelombang ini. Gelombang radio banyak digunakan, terutama dalam bidang telekomunikasi, seperti handphone, televisi, dan radio. Di antara spektrum gelombang elektromagnetik, gelombang radio termasuk ke dalam spektrum yang memiliki panjang gelombang terbesar dan memiliki frekuensi paling kecil. Gelombang radio dihasilkan oleh elektron pada kawat penghantar yang menimbulkan arus bolak-balik pada kawat. Kenyataannya arus bolak-balik yang terdapat pada kawat ini, dihasilkan oleh gelombang elektromagnetik. Gelombang radio ini dipancarkan dari antena pemancar (transmitter) dan diterima oleh antena penerima (receiver). Jika dibedakan berdasarkan frekuensinya, gelombang radio dibagi menjadi beberapa band frekuensi. Nama-nama band frekuensi beserta kegunaannya dapat Anda lihat pada tabel berikut ini.
Rentang Frekuensi Gelombang Radio, berikut nama band, singkatan, frekuensi, panjang gelombang, dan Contoh Penggunaan:
1. Extremely Low Frequency(ELF)=(3 – 30GHz),(105 – 104km),Komunikasi dengan bawah laut
2. Super Low Frequency(SLF)=(30 – 300GHz),(104 – 103km),Komunikasi dengan bawah laut
3. Ultra Low Frequency(ULF)=(300 – 3000Hz),(103 – 102km),Komunikasi dalam pertambangan
4. Very Low Frequency(VLF)=(3 – 30GHz),(102 – 104km),Komunikasi di bawah laut
5. Low Frequency(LF)=(30 – 300GHz),(10 – 1km)   Navigasi
6. Medium Frequency(MF)=(300 – 3000GHz),(1 – 10–1km),Siaran radio AM
7. High Frequency(HF)=(3 – 30GHz),(10–1 – 10–2km),Radio amatir
8. Very High Frequency(VHF)=(30 – 300GHz),(10–2 – 10–3km),Siaran radio FM dan televisi
9. Ultra High Frequency(UHF)=(300 – 3000Hz),(10–3 – 10–4km),Televisi dan handphone
10. Super High Frequency(SHF)=(3 – 30GHz),(10–4 – 10–5km),Wireless LAN
11. ExtremelyHighFrequency(EHF)=(30 – 300GHz),(10–5 – 10–6km),Radio astronomi
Manfaat Gelombang Elektromagnetik di bidang teknologi (Fisika):
Perlu diketahui. Rentang/spektrum Gelombang Elektromagnetik (GEM). Terdiri dari beberapa urutan, yakni sinar gamma, sinar X, ultra violet, cahaya tampak, infra merah, gelombang mikro, gelombang TV dan gelombang radio, dst dalam urutan ini frekuensinya makin kecil, tapi panjang gelombangnya makin besar.

Urutan Spektrum Gelombang Elektromagnetik dari Frekuensi Besar ke Frekuensi Kecil / dari Panjang gelombang Kecil ke Panjang Gelombang Besar
  • Sinar gamma( γ )
  • Sinar Rontgen atau Sinar x
  • Sinar ultraungu atau sinar ultraviolet
  • Sinar tampak
  • Sinar inframerah Atau IR
  • Gelombang RADAR
  • Gelombang TV
  • Gelombang Radio
Urutan Frekuensi Cahaya Tampak dari Besar ke Kecil
  • Cahaya ungu
  • Cahaya nila
  • Cahaya biru
  • Cahaya hijau
  • Cahaya kuning
  • Cahaya jingga
  • Cahaya merah
Spektrum Gelombang Elektromagnetik
Rentang panjang gelombang dari masing-masing terlihat dari gambar di atas. Untuk rentang frekuensi beberapa gelombang yang terkenal adalah sebagai berikut:
  • Gelombang RADAR : sekitar 1010 Hz
  • Sinar infrared (IR) : 1011 - 1014 Hz
  • Sinar ultraviolet (UV) : 1015 - 1016 Hz
  • Sinar Rontgen (sinar X) : 1016 - 1020 Hz
  • Sinar gamma : 1020 - 1025 Hz




3. Bahaya dari Gelombang Elektromagnetik
1.      Dapat menyebabkan kanker kulit, katarak, rendahnya produk ganggang, menghitamkan warna kulit, melemahkan sistem kekebalan tubuh (Sinar Ultraviolet).
2.      Dapat menyebabkan kemandulan (Sinar Gamma).
3.      Dapat menyebabkan kerusakan sel/jaringan hidup manusia (Sinar X dan terutama sinar Gamma).

4.Sifat – sifat Gelombang Elektromagnetik
Gelombang elektromagnetik adalah gelombang yang tidak memerlukan medium untuk merambat dalam ruang hampa. Disini gelombang electromagnet ini mempunyai beberapa sifat-sifat antara lain sebagai berikut ;
1.      Gelombang elektromagnettik dapat merambat dalam ruang tanpa medium (di ruang hampa).
2.      Tidak memiliki muatan listrik sehingga bergerak lurus dalam medan magnet maupun medan listrik.
3.      mengalami pemantulan (refleksi), pembiasan (refraksi), perpaduan (interferensi), pelenturan (difraksi), pengutuban (polarisasi).
4.      Perubahan medan listrik dan medan magnet terjadi secara bersama, sehingga medan listrik dan medan magnet sefase dan berbanding lurus.
5.       Merupakan perambatan getaran medan listrik dan medan magnet yang saling tegak lurus terhadap arah rambatnya dan termasuk gelombang transversal.
6.      Tidak bermassa dan tidak dipengaruhi medan gravitasi.
7.      Merambat dalam lintasan garis lurus.
8.      Kecepatannya di ruang hampa sebesar 3 × 108 m/s.
Catatan:
Gelombang radio dipakai sebagai gelombang pembawa sistem komunikasi karena mudah dipantulkan oleh lapisan ionosfer.
Ada 2 macam cara membawa gelombang bunyi:
  1. Modulasi Amplitudo (AM)
    Amplitudo gelombang radio disesuaikan dengan frekuensi gelombang bunyi dengan frekuensi tetap.
  2. Modulasi Frekuensi (FM)
    Frekuensi gelombang radio disesuaikan dengan frekuensi gelombang bunyi dengan amplitudo tetap.
Sistem FM lebih unggul daripada AM karena FM dapat mengurangi desau akibat kelistrikan diudara, walaupun jangkauannya terbatas sekali.
KESIMPULAN

Elektromagnetik dari kata “Elektro” dan “Magnetik” yang berarti gelombang yang terdiri dari energy Listrik dan Magnet yang memancar dengan sumber Muatan yang bergerak bolak-balik. System kerja elektromagnetik merambat dengan system tangan kanan manusia yaitu arah jari keatas adalah Medan Listrik, arah telapak tangan adalah Medan Magnet, dan arah jempol adalah arah merambat vektor gelombang.

# Jenis dan Manfaat Gelombang Elektromagnetik
1. Sinar Gamma.
• Frekuensinya : 1020 hz -sd- 1025 hz
• Mempunyai daya daya tembus sangat besar
• Manfaat:
- Industri untuk mengetahui struktur logam
- Pertanian untuk membuat bibit unggul
- Teknik nuklir untuk membuat radioisotope
- Kedokteran untuk terapi dan diagnosis
- Farmasi untuk sterilisasi

2. Sinar X.
• Frekuensinya : 1016 hz -sd- 1020 hz
• Daya tembus besar
• Manfaat:
- Dipakai untuk mendeteksi organ organ dalam tubuh

3. Ultra Violet.
• Frekuensinya : 1015 hz -sd- 1016 hz
• Sumber utamanya matahari
• Manfaat:
- Diperlukan pada proses asimilasi tumbuhan
- Membunuh beberapa jenis kuman penyakit kulit
- Digunakan untuk satelit

4. Cahaya Tampak.
• Satu-satunya GEM yang dapat dilihat (teramati mata manusia)
• Panjang gelombangnya : 430 nm -sd- 690 nm
• Manfaat:
- Membuat kita dapat melihat

5. Infra Merah.
• Frekuensinya : 1011 hz -sd- 1014 hz
• Manfaat:
- Digunakan pada fotografi (pemotretan dari udara atau satelit)
- Untuk pemetaan permukaan bumi dan sumber-sumber alam
- Dapat juga dipakai pada terapi fisik (physical therapy)
- Bisa digunakan untuk remote benda elektronik

6. Gelombang Radar atau gelombang mikro.
• Manfaat :
- Untuk mendeteksi pesawat yang bergerak mendekati/menjauhi pangkalan udara.
- Dapat juga dipakai pada sarana komunikasi.

7. Gelombang TV dan Gelombang Radio.
• Manfaat :
- Penggunaannya sebagian besar untuk pemancar radio dan TV


# Sifat Gelombang Elektromagnetik
1.      Gelombang elektromagnettik dapat merambat dalam ruang tanpa medium (di ruang hampa).
2.      Tidak memiliki muatan listrik sehingga bergerak lurus dalam medan magnet maupun medan listrik.
3.      mengalami pemantulan (refleksi), pembiasan (refraksi), perpaduan (interferensi), pelenturan (difraksi), pengutuban (polarisasi).
4.      Perubahan medan listrik dan medan magnet terjadi secara bersama, sehingga medan listrik dan medan magnet sefase dan berbanding lurus.
5.      Merupakan perambatan getaran medan listrik dan medan magnet yang saling tegak lurus terhadap arah rambatnya dan termasuk gelombang transversal.
6.      Tidak bermassa dan tidak dipengaruhi medan gravitasi.
7.      Merambat dalam lintasan garis lurus.
8.      Kecepatannya di ruang hampa sebesar 3 × 108 m/s.

Tidak ada komentar:

Poskan Komentar